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Abstract— In this paper, we present a terminal sliding mode 
control for MIMO T-S fuzzy systems. It is shown that the concept 
of extreme matrices is used to determine the upper bound 
information of the interactions of the fuzzy subsystems first, and 
a terminal sliding mode controller and a set of sliding variables 
are then designed to enable finite time reachability of the system 
origin. Simulation results are presented in support of the 
proposed approach. 
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I.  INTRODUCTION  
Fuzzy logic control has been proven to be a successful 

control approach for a class of complex nonlinear systems, see 
[1-3], for example. In the conventional fuzzy logic control 
design, T-S fuzzy model is used to model the complex 
nonlinear system first, so that a local controller can be designed 
for each local fuzzy subsystem. The global fuzzy logic control 
law can then be obtained by aggregating all the local 
controllers using the fuzzy inference law. 

Recently, many new stability analyses and controller design 
results for T-S fuzzy systems have appeared in the fuzzy 
control literature [4-6]. The system states can be proven to be 
asymptotically stable, that is, the convergence in such systems 
can at best be exponentially with infinite settling time. It is 
therefore interesting to design controller for T-S fuzzy systems 
with finite time convergence property. Comparing to the 
infinite time controller, due to the non-Lipschitz property, the 
finite time controller is able to not only provide faster 
convergence rate, but also perform better in the presence of 
system uncertainties and disturbances [7, 8].  

Terminal sliding mode (TSM) control was developed in [9-
11] to achieve finite time convergence of the system dynamics 
on the sliding mode surface. In [9, 11], the hierarchical terminal 
sliding mode structure was proposed for SISO control systems 
such that the sliding variables can converge to zero sequentially 
and then, the system states can reach the system origin in finite 
time. A new TSM surface was proposed in [10] for MIMO 
linear systems. It was shown that by suitably designing the 
parameter matrices of the sliding variable, on the sliding mode 
surface, the system states converge to zero in finite time.  

In this paper, we present a systematic TSM control design 
for MIMO T-S fuzzy systems. We first introduce the concept 

of the extreme matrices [12, 13] where, in each subspace, a 
dominant membership function, together with its local 
subsystem, dominates the global T-S fuzzy system. A set of 
extreme matrices describing the upper bounds of all the 
interactions among the local fuzzy subsystems in the worst 
stability case are then derived. A TSM control law and a set of 
TSM surfaces using these extreme matrices as the bounded 
information are designed to guarantee finite time convergence 
of the closed-loop system. It is the extreme matrices that 
simplify the TSM control design for MIMO T-S fuzzy systems. 

To our best knowledge, there is little work dealing with 
finite time control for T-S fuzzy systems in the literature at 
present stage. The proposed control scheme expands the class 
of nonlinear systems that can be handled using TSM technique.  

The rest of the paper is organized as follows. Section II 
introduces the MIMO T-S fuzzy systems. Section III discusses 
the concept about the extreme matrices. Section IV presents 
TSM control design for MIMO T-S fuzzy systems. Section V 
presents a numerical simulation example in support of the 
developed control scheme. Section VI gives conclusions. 

II. PROBLEM FORMULATION 
Consider the MIMO T-S Fuzzy system with both fuzzy 

inference rules and local analytic linear models as follows: 

       :iR IF     1 1 ...i i
n nx is F AND x is F              

                     THEN i= +i
1 11 1 12 2x A x A x        

                                    2 21 1 22 2 2
i i= + +x A x A x B u  

                               for 1,.......i m= ,                                       (1) 

where iR  represents the thi fuzzy inference rule, m  is  the 
number of inference rules, ( 1,... )jF j n=  are fuzzy sets, 

1
n p−∈ℜx and 2

p∈ ℜx are the system state variable vector, 
p∈ ℜu is the control input, ( ) ( )

11
i n p n p− × −∈ ℜA , ( )

12
i n p p− ×∈ℜA , 

( )
21

i p n p× −∈ℜA , 22
i p p×∈ ℜA , and 2

p p×∈ℜB  are the system 
matrices, 2B is non-singular, and 1( ,..., )T

nx x=x . 

Denote iµ as the normalized fuzzy membership function 
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Using the fuzzy inference method with a center-average 
defuzzifier, product inference and singleton fuzzifier, the 
MIMO T-S fuzzy system (1) can be expressed by the following 
global model: 

            1 11 1 12 2( ) ( )µ µ= +x A x A x  
            2 21 1 22 2 2( ) ( )µ µ= + +x A x A x B u                                (3) 
where 

            11 111
( ) ,m i i

i
µ µ

=
=∑A A  12 121

( ) ,m i i
i

µ µ
=

=∑A A    

            21 211
( ) ,m i i

i
µ µ

=
=∑A A 22 221

( ) ,m i i
i

µ µ
=

=∑A A  

            ( )1 2, ,..., mµ µ µ µ= .                                                   (4) 

For the further analysis, we let 

            11 12

21 22

i i
i

i i

 
=  
 

A A
A

A A
,   

2

0 
=  
 

B
B

,                              (5a) 

            11 12

21 22

( ) ( )
( )

( ) ( )
µ µ

µ
µ µ

 
=  
 

A A
A

A A
.                                     (5b) 

Before we proceed, we have the following assumptions: 

Assumption 1: Each linear subsystem in (5a) is 
controllable, i.e. the controllability matrices 

( ) ( )2 1
, , ,...,

ni i i i − =   
M B A B A B A B  for 1,...,i m= have full 

rank.  

Assumption 2: The global fuzzy model (5b) is controllable 
in the state space, i.e. the controllability matrix 

1, ( ) ,..., ( )nµ µ− =  M B A B A B  has full rank in the state space 
[13].  

III. EXTREME MATRICES 
Following [12, 13], we decompose the state-space of the 

MIMO T-S fuzzy system (3) into m subspaces as follows: 

    { }| , 1, 2,..., ,i l
i x l m l iµ µ= ≥ = ≠S ,  for 1, 2,...,i m= .     (6) 

The characteristic function of iS is defined by 

      
1( ),
0( ).

ii

i

x
x

η
∈

=  ∉

S
S                                            (7) 

Let G be the set of membership functions satisfying (2). Then, 
the global model of the MIMO T-S fuzzy system can be 
expressed in each subspace as 

    1 11 11 1 12 12 2[ ( )] [ ( )]i i i iµ µ= + ∇ + + ∇x A A x A A x         
    2 21 21 1 22 22 2 2[ ( )] [ ( )]i i i iµ µ= + ∇ + + ∇ +x A A x A A x B u ,       (8) 

where 

            
1

( ) lmi l il
jk jkl

µ µ
=

∇ = ∇∑A A , il l i
jk jk jk∇ = −A A A ,  

            ,l Gµ ∈      1,...,l m= ,   l iµ µ≠ , 
            0lµ ≠ ,     ix∀ ∈S ,    
             for 1, 2,...,i m= , 1,2j = , and 1, 2k = .                     (9) 

Obviously, the interactions of the fuzzy subsystems are 
represented by ( )i

jk µ∇A . Here the thi  subsystem (8) is 
different from the fuzzy dynamical local model in (3), because 
it considers all the interactions among the local fuzzy models. 

Using the characteristic function of iS , (8) can be denoted 
by 

 1 11 11 1 12 12 2[ ( )] [ ( )]i i i i i i iµ µ= + ∇ + + ∇x A A x A A x   
 2 21 21 1 22 22 2 2[ ( )] [ ( )]i i i i i i i iµ µ= + ∇ + + ∇ +x A A x A A x B w ,    (10) 

where 1, 2,...,i m= , i iη=x x , and i iη=w u .    
It can be seen that the thi  subsystem is time-varying. For 

the design of a TSM controller, we define the following upper 
bounds: 

                 ( ( )) ( ) ( )i T i i T i
jk jk jk jkµ µ∇ ∇ ≤A A E E ,                       (11) 

for 1, 2,...,i m= , 1,2j = , and 1, 2k = . Here we call the 
matrices, i

jkE , the extreme matrices. 

IV. TSM FOR MIMO T-S FUZZY SYSTEMS 
In this section, we will develop a TSM controller for 

MIMO T-S fuzzy systems introduced in section 2. In order to 
obtain the terminal convergence of the state variables, we have 
the following definitions. 

Definition 1: The TSM surface can be described by the 
following first order nonlinear differential equations [14] 

                         ( ) 0q Qs x x sign xβ= + =  ,                         (12) 

where x ∈ ℜ , α , 0β > , q  and Q  are odd integers and 
Q q> . 

Definition 2: The equilibrium point 0x = of the differential 
equation (12) is globally finite-time stable, i.e., for any given 
initial condition 0(0)x x= , the system state converges to 0x =  
in finite time [14] 

                             1
0

1
(1 )

QT x
q Qβ

−=
−

,                            (13) 

and stays there forever.   

Based on [10], the TSM surface for the MIMO T-S fuzzy 
system in the thi  subspace is defined as  

                        1 1 2 2 3 1 0i i i i q Q= + + =s c x c x c x ,                       (14) 
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where ( )
1
i p n p× −∈ ℜc , 2

i p p×∈ ℜc , and ( )
3
i p n p× −∈ ℜc  are the 

parameter matrices of the TSM surface. 

Lemma 1: ( Man and Yu [10] ) If  

                                          2q Q> ,                                      (15) 

then the control input iw is bounded, and hence u  is bounded. 

For the further analysis, we have the following 
assumptions. 

Assumption 3: The system matrices 12 12( )i T i  A A  and 

12 12( )i i T  A A  are non-singular for 1,...,i m= .  

Assumption  4: The interactions of the fuzzy subsystems 
12 ( )i µ∇A  in the thi  subspace are bounded in Euclidean norm 

with 1
12 12 12 12( )(( ) ) ( ) 1i i T i i Tµ −∇ <A A A A . 

Assumption 5: 12
iE are designed such that not only 

condition (11) is satisfied, but also it is bounded in Euclidean 
norm with 1

12 12 12 12(( ) ) ( ) 1i i T i i T− <E A A A . 

To obtain the sufficient condition of the existence of the 
TSM surface (14) for the MIMO T-S fuzzy system in the thi  
subspace, we have the following theorem. 

Theorem 1: Consider the MIMO T-S fuzzy system in (3). If 
the control input for the  thi  subsystem is designed as: 

        

( )

( )

1
1

2 2 1 2( ) ( )

s s

s s

q Q i

i i i i i i

q Q i
m

s
sign

s

β−

  
   = − + +  
  
   

w c B k s k ,     (16a) 

where  

         1 1 11 1 1 12 2 2 21 1 2 22 2
i i i i i i i i i= + + +k c A x c A x c A x c A x  

                 ( )
3 11 1 12 2( ) ( )( )i q Q Q i i

lq Q diag x −+ +c A x A x ,            (16b) 

         2 1 11 1 1 12 2 2 21 1 2 22 2
i i i i i i i i i= + + +k c E x c E x c E x c E x  

                 ( )
3 11 1 12 2( ) ( )( )i q Q Q i i

lq p diag x −+ +c E x E x ,         (16c) 

         

( )
1

( )

( )

( )

q Q Q

q Q Q
l

q Q Q
n p

x
diag x

x

−

−

−
−

 
 =  
  

,               (16d)  

then the terminal sliding variable vector is  will reach the TSM 
surface 0i =s  in finite time 

                                i
s s

i
T T≤∑ ,                                         (16e) 

where 

             ( )
11 (0) (0)

(1 )

s sq QTi i i
s i

s s

T
q Qβ

−

=
−

s s .                (16f)  

Proof: Defining a Lyapunov function  

                              1 2( )i i T iV = s s                                       (17) 

and differentiating iV with respect to time, we have  

( )i i T iV = s s  

     ( )
1 1 2 2 3 1( ) ( ) ( )i T i i i q Q Q

lq Q diag x − = + + s c x c x c x  

     1 11 11 1 1 12 12 2( ) [ ( )] [ ( )]i T i i i i i i i iµ µ= + ∇ + + ∇s c A A x c A A x  

         2 21 21 1 2 22 22 2[ ( )] [ ( )]i i i i i i i iµ µ+ + ∇ + + ∇c A A x c A A x         

        ( )
2 2 3 11 11 1( ) ( )[ ( )]i i i q Q Q i i i

lq Q diag x µ−+ + + ∇c B w c A A x  

         ( )
3 12 12 2( ) ( )[ ( )]i q Q Q i i i

lq Q diag x µ− + + ∇ c A A x  

     1 1 11 1 1 12 2( ) ( ) ( )i T i i i i i i iµ µ= + ∇ + ∇s k c A x c A x  

         2 21 1 2 22 2 2 2( ) ( )i i i i i i i iµ µ+ ∇ + ∇ +c A x c A x c B w  

         ( )
3 11 1( ) ( ) ( )i q Q Q i i

lq Q diag x µ−+ ∇c A x  

         ( )
3 12 2( ) ( ) ( )i q Q Q i i

lq Q diag x µ− + ∇ c A x  

     1 11 1 1 12 2( ) ( )i i i i i i i iµ µ≤ ∇ + ∇s c A x s c A x  

         2 21 1 2 22 2 2( ) ( )i i i i i i i i i iµ µ+ ∇ + ∇ −s c A x s c A x s k  

         ( )
3 11 1( ) ( ) ( )i i q Q Q i i

lq Q diag x µ−+ ∇s c A x  

         ( )
3 12 2( ) ( ) ( )i q Q Q i i

lq Q diag x µ−+ ∇c A x  

         ( ) ( )
1( ) s s s s

Tq Q i q Q ii i T
ms sβ  −  s  

     ( ) 22 ( ) s s sq Q Qi iVβ +≤ − .                                                       (18) 

According to the finite time stability criteria (12), TSM surface 
(14) will be reached in the finite time (16e).  

The design of the parameter matrices of the TSM variable 
in (14) and the convergence property of the MIMO T-S fuzzy 
system on the TSM surface are stated in the following theorem.  

Theorem 2: Consider the MIMO T-S fuzzy system in (3) 
with the TSM controller in (16a) under Assumptions 3-5. If the 
TSM parameter matrices are designed such that  

             1
1 12 12 12 11 11( ) ( ( ) )i i T i i T i i−= +c A A A A E I                  (19a) 

             ( )1
2 12 12 12 121 (( ) ) ( )i i i T i i T−= −c E A A A I                     (19b) 

             1
3 12 12 12( ) ( ( ) ) ( )i i T i i T i

ldiag β−=c A A A ,                       (19c) 

then the system states will converge to zero in finite time on the 
TSM surface. 
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Proof: On the TSM surface (14), the state variable vector  
2x  can be written as 

1
12 12 12

2 11 11 11
12 12 12 12

( ) ( ( ) )
1 (( ) ) ( )

i T i i T
i i

i i T i i T

−

−
= − +−

A A Ax A E Ix
E A A A

 

              1( )i q Q
ldiag β + x .                                                   (20) 

It is seen that 2x  is the linear combinations of 1x . Therefore to 
prove that the system states can converge to zero in finite time 
on the TSM surface, we only need to show that 1x  can reach 
the system origin in finite time.   

Consider the Lyapunov function  

                             1 11 2 TV = x x .                                    (21) 

Differentiating V with respect to time and using (10) and (20), 
we have 

       1 1
TV = x x       

           1 11 11 1[ ( )]T i i µ= + ∇x A A x  

              1
12 12 12 12[ ( )(( ) ) ( ) ]i i T i i Tµ −− + ∇I A A A A  

              
1

12 12 12 12
111

12 12 12 12

( ) ( ( ) )
(( ) ) ( )

i i T i i T
i

i i T i i T

−

−
× −

A A A A A
I E A A A

 

              11 1 1( )i i q Q
ldiag β + + E Ix x  

           2
11 11 1( )i i µ≤ + ∇A A x      

              
1

12 12 12 12
111

12 12 12 12

1 ( )(( ) ) ( )

1 (( ) ) ( )

i i T i i T
i

i i T i i T

µ −

−

− ∇
− −

A A A A
A

E A A A
 

              2
11 1 1 1( )i i T q Q

ldiag β + + E x x x  

           1 1( )i T q Q
ldiag β< − x x  

           ( ) 22 i q Q QVβ += − .                                                        (22) 

According to the finite time stability criteria (12), the system 
states 1x  and 2x  will reach the system origin in finite time.  

V. SIMULATION EXAMPLE 
To illustrate the finite time stabilization property of the 

proposed TSM controller, we consider the following MIMO T-
S fuzzy system: 

   1 :R IF     1 1x is F              

          THEN  

              

1 1

2 2 1

3 3 2

4 4

1 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 0 1
1 2 3 4 1 0

x x
x x u
x x u
x x

      
              = +                − − − −      

     23a) 

   2 :R IF     1 2x is F              

          THEN  

              

1 1

2 2 1

3 3 2

4 4

1 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 0 1
3 4 5 6 1 0

x x
x x u
x x u
x x

      
              = +                

      

.           (23b) 

We use the following membership functions, 1F and 2F : 

                1
1

1

1 1 (1 exp( 14( 8)))
1 exp( 14( 8))

x
F

x
π

π
− + − −

=
+ − +

 

                2 11F F= − . 

In this simulation, we choose 

                 1 2
11 11

1 0
0 1
 = =  
 

A A , 1 2
12 12

1 0
0 1
 = =  
 

A A ,  

                 1
21

1 0
1 2

 =  − − 
A , 2

21

1 0
3 4
 =  
 

A , 

                 1
22

0 0
3 4

 =  − − 
A , 2

22

0 0
5 6
 =  
 

A , 2

0 1
1 0
 =  
 

B . 

The extreme matrices are selected as: 

             1 2
11 11

0.5 0
0 0.5

E E  = =  
 

, 1 2
12 12

0.5 0
0 0.5

E E  = =  
 

, 

             1 2
21 21

1 0
2 3

E E  = =  
 

, 1 2
22 22

0 0.5
4 5

E E  = =  
 

. 
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Figure 1.  The system states 
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Figure 2.  The control input 1u  
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Figure 3.  The control input 2u  

Simulation results shown in Fig. 1 illustrate the effectiveness of 
the TSM controller (16a). Figs. 2 and 3 show the control inputs 

1u  and 2u , respectively. It is seen that the good system 
performance has been achieved using the proposed control 
scheme. Finite time convergence property is guaranteed.  

 

VI. CONCLUSIONS 
A terminal sliding mode control scheme has been 

developed in this paper for MIMO T-S fuzzy systems. The 

extreme matrices have been used to design not only the TSM 
controller, but also the TSM surface. It has been shown that the 
TSM controller is able to drive system states to reach the 
system origin in finite time.  A simulation example has been 
given in support of the proposed control scheme.  
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